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Long-Range Behavior of Dual-Restricted QCD
Vacuum
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We analyze the geometrical structure of the local non-Abelian gauge theory in
terms of the magnetic symmetry, using the resemblance between the non-Abelian
gauge formulations and Einstein’s theory of gravitation in a higher dimensional
unified space. The mathematical foundation of dual QCD in fiber bundle form
is then discussed and used for the analysis of the important problem of color
confinement in QCD. The associated Lagrangian formulation in magnetic gauge
is shown to lead to dual dynamics due to the emergence of the topological charges
of magnetic nature. The dynamical breaking of magnetic symmetry is shown to
lead to the magnetic condensation of the QCD vacuum. A state of the dual
superconductivity in the QCD vacuum is then shown to evolve which ultimately
pushes the QCD vacuum to the confining phase. The flux tube structure of the
magnetically condensed QCD vacuum is analyzed by computing the asymptotic
string solutions of the field equations. The energy content of such confining
structures is computed and analyzed in terms of its logarithmic and linear nature.

1. INTRODUCTION

Quantum chromodynamics is a non-Abelian gauge theory of strong
interactions and exhibits many interesting nonperturbative phenomena, e.g.,
quark confinement, chiral symmetry breakdown, mass spectrum of the physi-
cal states, etc. However, its precise physical meaning has been elusive. The
issue of quark confinement is one of the main problems of hadronic physics
that needs to be resolved for the correct understanding of the structure of
hadrons as well as for quark-nuclear physics, which is basically governed
by the QCD dynamics. There has been great progress in the theoretical study
of these nonperturbative phenomena due to the understanding of the dual
Ginzburg–Landau (DGL) theory [12] and the lattice gauge theory [14]. Taking
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the analogy of superconductivity, Nambu [18] and others [10, 27] have shown
that the color confinement in dual QCD occurs in a similar way as the
magnetic flux confinement occurs in a superconductor due to the Meissner
effect. Further, as proposed by ’t Hooft [10], the SU(N) gauge theory can be
reduced to U(1)Ne21 gauge theory with monopole by Abelian gauge fixing.
In this gauge, the QCD monopole appears as a topological object whose
condensation may lead to the color confinement through the dual Meissner
effect [16, 17, 27]. Therefore, the dual Meissner effect, with the role of the
(chromo) electric and (chromo) magnetic fields reversed, may be an appealing
explanation for the color confinement. The chromoelectric field between the
color isocharges is expelled from the embedding vacuum and the chromoelec-
tric flux tube generates a linear rise in the energy [1, 29, 30] among quark
pairs. It is therefore expected to be responsible for the large-distance confining
behavior of the QCD vacuum through the condensation of magnetically
charged objects [10, 21].

As it is well known that the non-Abelian gauge theories essentially
exhibit an inherent built-in duality, a number of attempts have been made
recently to formulate QCD as a dual gauge theory [2, 3, 6, 22, 23, 27].
Imposing the magnetic symmetry, a restricted version of dual QCD has been
formulated [4, 5, 20] and used for the explanation of confinement mechanism.
In the present paper, the geometrical structure of the local non-Abelian gauge
theory is used to explain the problem of color confinement. Constructing the
Lagrangian for such dual theory in magnetic gauge, we show that the dynami-
cal breaking of the magnetic symmetry by an effective potential creates a
state of dual superconductivity, thereby pushing the QCD vacuum to the
confining phase. The field equations associated with the flux tube structure
in the confining phase are derived. Finally, the long-range behavior of the
dual RCD vacuum is analyzed by computing the asymptotic string solutions
and the finite energy per string length particularly for large-scale
considerations.

2. MAGNETIC SYMMETRY AND DUAL DYNAMICS IN
NON-ABELIAN GAUGE THEORY

The non-Abelian theory of gauge fields may be viewed as the Einstein
theory of gravitation in a higher dimensional unified space and allows the
introduction of some additional internal symmetries [7, 22, 24, 28]. In this
connection, the introduction of the magnetic symmetry in such non-Abelian
formulations of QCD plays an important role and has important bearings on
the dual dynamics of the theory. In such a higher dimensional metric formula-
tion of the gauge theory, the unified space P consists of the four-dimensional
external space M and n-dimensional internal group space G and is identified
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as the (4 1 n)-dimensional metric manifold of gAB (A, B 5 0, 1, . . . , 3 1
n). Then, P involves an n-dimensional isometry group with n-Killing vector
fields ji (i 5 1, 2, . . , n), which satisfy the canonical commutation relations
given by

[ji , jj] 5 fij
kjk (2.1)

and the Killing condition given by

£jigAB 5 0 (2.2)

where £ji is the Lie derivative along the direction of ji. Since these Killing
vector fields may be viewed as an n-dimensional involutive distribution on
P, they admit a unique maximal integral manifold as a metric submanifold,
i.e., the internal metric,

fij 5 gABjA
i jB

j (2.3)

is invertible. The unified space may be regarded as a principal fiber bundle
P(M, G) over space-time if we identify the quotient space P/G as the base
manifold M with a canonical projection P: P → M. As such, with the choice
of the vector fields ji as orthonormal ones and G as a semi-simple group,
the metric fij becomes of the topologically meaningful Cartan–Killing form.
The corresponding Einstein theory in unified space then becomes the canoni-
cal Yang–Mills theory. One can now define the magnetic symmetry as an
additional internal isometry H, which forms a subgroup of the structure group
G which commutes with it and admits some additional Killing vector fields.
Let one of the Killing vector fields be m; then by assumption, we have

m 5 miji , [m, ji] 5 0 (2.4)

and for the associated Lie derivative

£mgAB 5 0 (2.5)

It follows that the multiplet m̂ can be written as

m̂ 5 [m1, m2, . . . . , mn]T (2.6)

(T denoting the transpose), which must form an adjoint representation of the
gauge group with the internal metric fij chosen to be of the Cartan–Killing
form. The Killing condition (2.5) restricts the metric fij as well as the
associated potential (connection), and can be written as

Dmm̂ 5 0, i.e., m m̂ 1 g
›

Wm 3 m̂ 5 0 (2.7)

where
›

Wm is the gauge potential of the group G. Thus, the magnetic symmetry
restricts the connection to those whose holonomy bundle becomes a reduced
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bundle P(M, H ). It therefore restricts the dynamical degree of freedom of
the theory, while keeping full gauge degrees of freedom intact, and hence
the connection (potential) satisfying the above Killing condition is of restricted
nature. It is clear that the magnetic symmetry associated with m̂ clearly
imposes strong constraints on connection and may be regarded as the symme-
try of the potentials. The connection, which satisfies the Killing condition,
is called the restricted connection, and for SU(2), the restricted potential
[choosing G [ SU(2) and H [ U(1)] may be obtained as

›
Wm 5 Amm̂ 2

1
g

m̂ 3 mm̂ (2.8)

Here, m̂ ?
›

Wm [ Am is the color electric potential of the Cartan subgroup and
is not restricted by the constraint. On the other hand, the second part on the
right-hand side of Eq. (2.8) is completely determined by the magnetic symme-
try and is topological (dual magnetic) in nature. Thus, the beauty of the
magnetic symmetry is that it can be used to describe the topological structure
of the gauge symmetry and the multiplet m̂ may then be viewed as defining
the homotopy of the mapping P2(S2),

m̂: S 2
R → S 2 5 SU(2)/U(1) (2.9)

where S 2
R is the two-dimensional sphere of the three-dimensional space and

S2 is the group coset space fixed by m̂. It shows clearly that by imposing
magnetic symmetry on the potential, one may bring the topological structure
into the dynamics explicitly.

The field strength
›

Gmn corresponding to the potential (2.8) may be
constructed in the form

›
Gmn 5 m

›
W n 2 n

›
Wm 1 g

›
Wm 3

›
W n

5 (Fmn 1 Bmn)m̂ (2.10)

It satisfies the identity given by

›
Gmn 3 m̂ 5

1
g

[Dm, Dn]m̂ (2.11)

where

Fmn 5 mAn 2 nAm (2.12)

Bmn 5 2
1
g

m̂ ? (mm̂ 3 nm̂) (2.13)

which holds for any arbitrary G. Thus, the total gauge field strength takes



Long-Range Behavior of Dual-Restricted QCD Vacuum 481

separate contributions from both parts, one unrestricted, and the other com-
pletely determined by the magnetic symmetry. It reflects the dual structure
of the formulation, which already appeared at the level of the potential (2.8)
in a general way independent of the choice of the symmetry G. Since, the
magnetic charge is topological in origin and the part Bmn is determined
completely by the topological degrees of freedom of the theory, this part of
the field strength can be identified as the magnetic one. It leads to the perfect
dual structure at the field strength level with the general non-Abelian field
strength given as

›
Gmn 5

›
Fmn 1

›
Bmn (2.14)

The above dual structure becomes more interesting when the topological
structure is brought further into the dynamics explicitly. So, for the SU(2)
case, let us rotate the magnetic vectors m̂ to a pre-fixed spacetime-independent
direction (say j3 in isospace) by a gauge transformation

m̂ →U j3 5 Um̂ 5 [0, 0, 1]T (2.15)

with the parameterization

m̂ 5 3
sin a cos b
sin a sin b
cos a 4 (2.16)

Choosing U 5 exp(2at2 2 bt3) in accordance with Eq. (2.15), one obtains
in the magnetic gauge

›
Wm →U

›
W 8m 5 (Am 1 B*m)ĵ3 (2.17)

where

›
B*m 5 B*mm̂ 5

1
g

cos a mb m̂ (2.18)

The associated field strength (in magnetic gauge) is also given by

›
Gmn →U

›
G 8mn 5 (Fmn 1 Bmn)ĵ3 (2.19)

The part associated with the topological degrees of freedom is then given by



482 Pandey and Chandola

Bmn 5 2
1
g

Sin a(ma nb 2 na mb) (2.20)

which is expressible in the form of the dual potential as

Bmn 5 B*n,m 2 B*m,n (2.21)

Hence, the potential B*m can be identified as the magnetic potential
associated with the topological monopole, which is completely determined
by m̂ up to the Abelian magnetic gauge degrees of freedom. Consequently,
in the magnetic gauge, one may indeed bring the topological (magnetic)
properties of m̂ down to the dynamical variable Bm by removing all nonessen-
tial gauge degrees of freedom. The important feature of the additional internal
symmetry discussed here is that, while keeping the full gauge degrees of
freedom intact, it restricts and reduces the dynamical degrees of freedom and
provides a self-consistent nontrivial subset of the original gauge theory. The
resulting theory may therefore be identified as a restricted dual gauge theory
(restricted chromodynamics).

3. FIELD EQUATIONS ASSOCIATED WITH FLUX TUBE IN
DUAL RCD

In this section, we formulate the flux tube system in dual RCD taking the
analogy from the dual Ginzburg–Landau (DGL) theory. The field-theoretical
formulation for such dual gauge theory may be developed explicitly using
the potential

›
Wm. For the simple case of SU(2), the QCD Lagrangian can

then be written as

L 5 2
1
4

›
G 2

mn 1 cigmDmc 2 m0cc (3.1)

where c is the quark doublet and
›

Gmn is the gauge field strength, which for
the RCD can be obtained by substituting the unrestricted potential by restricted
one, viz. Eq. (2.8). Here, the Lagrangian obtained by this substitution has
some undesirable features, one of which is that the monopole appears as a
pointlike object, but not as a regular field. Second, the magnetic potential
B*m of the monopole describes the magnetic field of the monopole by a
spacelike potential and contains the well-known string singularity. By intro-
ducing the dual magnetic potential Bm, which can describe the magnetic field
of the monopole with a regular timelike potential, and at the same time a
complex scalar field f for the monopole, one can remove these undesirable
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features. By using the dual gauge field, the RCD Lagrangian leads to the
following modified form:

Lm
dr 5 aigm1m 1

g
2i

(Am 1 B*m)2a 1 bigm1m 2
g
2i

(Am 1 B*m)2b

1 m0(aa 1 bb) 2
1
4

F 2
mn 2

1
2

FmnBmn 2
1
4

B*2
mn

1 Z1(m 1 i
4p
g

(A*m 1 Bm)2fZ2 2 V(f*f) (3.2)

where a and b are red and blue quarks, Am and Bm are the regular potentials
which describe the (color) electric and magnetic charges with the timelike
potentials, and

Fmn 5 An,m 2 Am,n (3.3)

B*mn 5
1
2

εmnsrBrs 5 Bn,m 2 Bm,n (3.4)

The Lagrangian given by Eq. (3.2) is an effective Lagrangian for dual
dynamics of RCD at the phenomenological level and has some interesting
features. It describes the possibility of the occurrence of two phases in such
a theory. One is the deconfinement phase, where magnetic symmetry is
preserved, and the other is the confinement phase, where the magnetic symme-
try is indeed broken dynamically. In the first phase, not only the quarks, but
the monopoles also appear as physical particle states. On the other hand, in
the confinement phase, they disappear from the physical spectrum and the
theory is expected to contain two magnetic glueballs as scalar and vector
modes of the condensed vacuum.

For the explanation of confinement mechanism of the colored sources
explicitly, let us write the Lagrangian (3.2) in the absence of quarks and
introduce the monopole source by a complex scalar field f (identified as the
order parameter). With these considerations, we have

Lm
dr 5 2

1
4

B*2
mn 1 Z1m 1 i

4p
g

Bm2fZ2 2 V(f*f) (3.5)

This Lagrangian is known to generate the dynamical symmetry breaking
through the effective potential. It, in turn, leads to the magnetic condensation
of the vacuum and guarantees the dual Meissner effect, which confines any
color electric flux present. The effective potential responsible for the dynami-
cal magnetic symmetry breaking is fixed by the requirement of ultraviolet
finiteness and infrared instability of the dual RCD Lagrangian. As obtained



484 Pandey and Chandola

by Coleman and Weinberg [8] by using the single-loop expansion technique,
it has the form given by

Veff 5
24p2

g4 Ff4
0 1 (f*f)212 ln

f*f
f2

0
212G (3.6)

where f0 5 ^f*f &1/2 is the expectation value of f. With such a Lagrangian,
the field equations in the magnetically condensed vacuum are obtained in
the form

1m 2 i
4p
g

Bm21m 1 i
4p
g

Bm2f 2
24p2

g4 14ff* ln
ff*
f2

0
2f 5 0 (3.7)

nB*mn 1 i
4p
g

(f*
›

mf) 2
32p2

g2 Bmff* 5 0 (3.8)

where f*
›

mf 5 fmf* 2 f*mf.
The unusual features of the dual RCD vacuum responsible for quark

confinement may become more transparent if one starts with the Nielsen and
Olesen [19] interpretation of vortex line solutions, so that the monopole pairs
can exist inside the superconductor in the form of thin flux tubes leading to
the confinement of colored fluxes. Orienting the flux tubes inside the hadronic
sphere along the direction of the z-axis and using the cylindrical coordinates
(r, u, z), we can write the potentials as

B1 5 Br cos u 2 Bu sin u, B2 5 Br sin u 1 Bu cos u
(3.9)

B3 5 Bz , B0 5 Bt

The potential (B*m) appearing in the field strength tensor Bmn is given by Eq.
(2.18) and one can replace B2

mn by B*2
mn with no change of signature in Eq.

(2.11). At first glance, this replacement appears to be wrong. However, it
seems to be correct in view of the fact that the correct signature is obtained
by requiring that the Hamiltonian of the theory should remain the same while
one switches over to the regular potential Bm. Hence, using the cylindrical
symmetry, we can write

Bm 5
1
g

cos a mb

which implies

Br 5
1
g

cos a rb (3.10a)

Bu 5
1
g

cos a
1
r

ub (3.10b)
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Bz 5
1
g

cos a zb (3.10c)

For f(x), we use the ansatz given by

f(x) 5 exp(inu)x(r) (n 5 0, 61, 62, . . .) (3.11)

In view of the uniqueness of the function f(x), we have

Bu(x) 5 B(r), as Bt 5 Br 5 Bz 5 0 (3.12)

Let us now take
›

E m and
›

B with z and u components, respectively. This leads to

B 5 B(r) 5
1
g

cos a
1
r

ub (3.13)

The color electric induction Em(r) along the z direction has the form

Em (r) 5 2
1
r

d
dr

[rB(r)] (3.14)

where we use
›

E m 5
›

¹ 3
›

B with B(r) 5 Bu 5 B.
The equations of motion in terms of cylindrical coordinates and the

cylindrical symmetric potentials may be derived in the form

d
dr F1

r
d
dr 11

g
cos aub2G 1

8p
g 1n

r
1

4p
g2r

cos aub2x2(r) 5 0 (3.15)

1
r

d
dr 1r

dx(r)
dr 2 2 F1n

r
1

4p
g2r

cos a ub2
2

1
24p2

g4 14x(r)2 ln
x2(r)
f2

0
2Gx(r) 5 0

(3.16)

Using Eqs. (3.10) and (3.11), one can directly write down these equations
in the simplest form as

d
dr F1

r
d
dr

(rB(r))G 2
8p
g 1n

r
1

4p
g

B(r)2x2(r) 5 0 (3.17)

1
r

d
dr 1r

dx(r)
dr 2 2 F1n

r
1

4p
g

B(r)2
2

1
24p2

g4 14x2(r) ln
x2(r)
f2

0
2Gx(r) 5 0

(3.18)

4. CLASSICAL VACUUM SOLUTIONS AND FIELD ENERGY

Using the Lagrangian density given by Eq. (3.5), we can find the energy
per string length (the string tension). For the static case (B0 5 0), it has the form
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K 5 #
`

0

r dr(2Lm
dr)

5 2p #
`

0

r dr3
1

2r2 H d
dr

rB(r)J2

1 1 d
dr

x(r)2
2

1 14p
g

B(r) 1
n
r2

2

x2(r)

1
24p2

g4 1f4
0 1 (x(r))412 ln

x2(r)
f2

0
2 122 4

(4.1)

The simplest solution that minimizes the energy is given by

B(r) 5 2
ng

4pr
(4.2)

and

x(r) 5 f0 (4.3)

For these solutions, the energy K has the lowest value and they are referred
to as the classical vacuum solutions satisfying the equations of motion. The
field equations given by Eqs. (3.17) and (3.18) are a complicated set of
coupled nonlinear differential equations and we do not have any exact solution
for them. However, one can obtain the associated asymptotic solution taking
the variation for B(r) as

B(r) 5 2
ng

4pr
[1 1 F(r)] (4.4)

Using the above variation with the equations of motion and taking the approxi-
mation for large r as x →

r→`
.f., we find the asymptotic behavior for large

values of r,

F(r) →
r→`

Cr1/2 exp12
4p
g

!2 f0r) (C 5 const). (4.5)

The above solution for an infinitely long RCD flux tube is similar to the
Nielson–Olesen [19] magnetic vortex solution for the vector potential and
shows that the vector potential vanishes exponentially at large distances.
Utilizing such asymptotic behavior of the associated dual QCD fields, we
find the string energy for large r,

K 5 D(as A2 1 8pf2
0) #

`

0

exp(22Ar) dr 2 AD as #
`

0

exp(22A r)
r

dr

5 K1 1 K2 (4.6)
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with

K1 5 D(as A2 1 8pf2
0) #

`

0

exp(22Ar) dr

K2 5 2AD as #
`

0

exp(22Ar)
r

dr

The constants D and A are given as

A 5
4p!2f0

g
and D 5

n2c2

4

and as (5 g2/4p) is the fine structure constant of dual chromodynamics.
(Here we have dropped the terms with higher powers of r in the denominator
due to the rapidly decreasing nature of the integral.)

Let us now analyze the behavior of these integrals separately.
1. The first part of K (viz. K1) clearly shows the decaying behavior for

large values of r and is therefore dominant only for the small values of r.
2. The second integral may be analyzed after decomposing it into two

parts,

K2 5 K d 1 K c (4.7)

where

K d 5 2AD as #
R

0

exp(22Ar)
r

dr

K c 5 2AD as #
`

R

exp(22Ar)
r

dr

(here, we have introduced the parameter R having its maximum value as the
radius of the hadronic sphere, and the flux tube is taken in such a way that
the maximum height or the length of the tube is the diameter of the hadronic
sphere). The second part of the integral (viz. K c) may be evaluated by using
the incomplete gamma function with exponential integral and taking the
series expansion in the form

K c 5 AD as1g 1 ln R 1 o
`

n51

(22A)nRn

n ? n! 2 (4.8)

where g is the Euler–Maclaurin constant. This expression shows that the
energy needed to liberate a quark from a color singlet is proportional to the
power of its distance of separation, and the expression then leads to a power
law for the confinement. Thus, the expression given by Eq. (4.8) shows that
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K c } asRn (with n $ 1)

For n . 1, the energy between the quarks increases with the separation,
whereas for n 5 1, it becomes linear in the separation. Thus, for n 5 1, the
color sources in the system are necessarily confined permanently. Permanent
quark confinement (for a given value of as) therefore, requires a potential
having n $ 1.

The string energy becomes more transparent if we introduce the critical
radius Rc of the phase transition. It leads to two different situations. In the
case when R . Rc, the integral K c becomes dominant and yields the dominant
logarithmic as well as linear contributions in powers of R for the confinement
potential, and hence the whole QCD vacuum goes over to the strong confining
phase. On the other hand, for the case when R , Rc, the integral K d becomes
dominant, which ultimately pushes the theory to the normal (i.e., deconfin-
ing) phase.

5. CONCLUSIONS

Using the dual gauge theory of QCD, we have analyzed the flux tube
system between quark pairs. The dual symmetric restricted gauge potential
constructed in terms of magnetic vectors on global sections describes the
dual dynamics associated with non-Abelian monopoles. The dual magnetic
potential derived in terms of the Eq. (3.10) in magnetic gauge is completely
topological in origin and describes the magnetic field of the monopole with
a regular timelike potential. Using the field-theoretic description of monopoles
in terms of a complex scalar field f, the effective Lagrangian given by Eq.
(3.5) yields the dual dynamics at the phenomenological level. The dynamical
symmetry breaking induced by the effective potential (3.6) in the strong
coupling limit leads to magnetic condensation of the dual RCD vacuum
which is responsible for setting the confinement forces in confining any
colored object. The resulting flux tube structure in dual RCD plays a major
role in the confinement mechanism and has a close analogy with the dual
Ginzburg–Landau theory. The vacuum solutions to the field equations have
been obtained and the RCD superconducting medium is characterized by the
value of the order parameter .f. 5 f0 [the classical vacuum value of the
field f(x)] which signals the breaking of the associated magnetic symmetry
dynamically. The finite-energy solutions constructed in the asymptotic limit
have the correct exponentially decaying behavior leading to depth or penetra-
tion of the color electric field in the dual RCD vacuum as [(4p/g!2f0]21,
which has important bearings on the nature of the type of superconducting
dual RCD vacuum [20].

The calculation of finite energy per string length for large r and its
analysis in terms of the linear and logarithmic nature (when the quarks are
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very distant) has been shown to have a close relationship with the color
confinement, which is in agreement with the results of other authors [3, 13,
25, 26]. The resulting flux tube energy expression clearly demonstrates the
emergence of a confinement–deconfinement phase transition in the dual QCD
vacuum. The energy expression confirms that the large-distance response of
the magnetically condensed dual QCD vacuum is of a strongly confining
nature and is responsible for the disappearance of the quarks and monopoles
from the physical spectrum of the theory at large hadronic distances. The
flux tube energy and the resulting confining potential have several phenome-
nological implications for the mass spectrum of the physical states including
the possibility of a multi-flux-tube structure of the superconducting dual QCD
vacuum, which shall be dealt with in future work.

ACKNOWLEDGMENTS

One of the authors (H.C.P.) thanks the Council of Scientific and Industrial
Research (CSIR), New Delhi, India, for financial assistance during the course
of this work.

REFERENCES

1. J. W. Alock, M. J. Burfitt, and W. N. Cottingham (1983). Nucl. Phys. B 226, 299.
2. M. Baker, J. S. Ball, and F. Zachariasen, (1986). Phys. Rev. D 34, 3894.
3. M. Baker, J. S. Ball, and F. Zachariasen, (1991). Phys. Rev. D 44, 3328.
4. H. C. Chandola, B. S. Rajput, J. M. S. Rana, and S. Sah (1993). Nuovo Cimento 106A, 509.
5. H. C. Chandola (1994). Nuovo Cimento 107A, 1453.
6. Y. M. Cho (1980). Phys. Rev. D 21, 1080.
7. Y. M. Cho and P. S. Jang (1975). Phys. Rev. D 12, 3789.
8. S. Coleman and E. Weinberg (1973). Phys. Rev. D 7, 1888.
9. G.’t Hooft (1974). Nucl. Phys. B 79, 276.

10. G. ’t Hooft (1978). Nucl. Phys. B 138, 1.
11. H. Ichie, H. Suganuma, and H. Toki (1996). Phys. Rev. D 54, 3382.
12. H. Ichie, H. Suganuma, and H. Toki (1995). Nucl. Phys. B 435, 207.
13. H. Kadama, Y. S. Matsubara, T. Y. Ohno, and T. Suzuki (1997). Prog. Theor. Phys. 98 , 1345.
14. S. Kitanara, Y. Matsuyanagi, and T. Suzuki (1995). Prog. Theor. Phys. 93, 1.
15. Y. Koma, H. Suganuma, and H. Toki (1999). Phys. Rev. D 60, 74024.
16. S. Mandelstam (1976). Phys. Rep. C 23, 245.
17. S. Mandelstam (1979). Phys. Rev. D 19, 249.
18. Y. Nambu (1974). Phys. Rev. D 10, 4262.
19. H. Nielsen and P. Olesen (1973). Nucl. Phys. B 61, 45.
20. H. C. Pandey, and H. C. Chandola (2000). Phys. Lett. B, in press.
21. A. M. Polyakov (1974). JETP Lett. 20, 194.
22. J. M. S. Rana, H. C. Chandola, and B. S. Rajput (1988). Ind. J. Pure Appl. Phys. 26, 587.
23. J. M. S. Rana, H. C. Chandola, and B. S. Rajput (1989). Prog. Theor. Phys. 82, 153.
24. S. Schlieder (1981). Nuovo Cimento 63A, 137.
25. S. L. Adler and P. Tsvi (1982). Phys. Lett. B 117, 91.



490 Pandey and Chandola

26. H. Suganuma, H. Ichie, S. Sasaki, and H. Toki (1995). In Proceedings of the International
Workshop on Color Confinement and Hadrons, H. Toki et al., eds. (World Scientific,
Singapore), p. 65.

27. T. Suzuki (1988). Prog. Theor. Phys. 80, 929.
28. A. Trautman (1970). Rep. Math. Phys. 1, 29.
29. S. Umisedo, H. Suganuma, and H. Toki (1998). Phys. Rev. D 57, 1615.
30. S. Umisedo, H. Toki, and H. Suganuma (1998). Preprint hep-ph/9801209.


